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Design Equations for FRP–
Strengthening of Columns

by G. Monti and S. Alessandri

Synopsis:Synopsis:Synopsis:Synopsis:Synopsis:          The paper presents an analytical study on FRP–strengthened RC sections
under combined bending and axial load. A secant approach is used that compares
quite well with the exact one. As a result, closed-form equations are developed for
designing in a straightforward way the amount of FRP needed to flexurally strengthen
under–designed concrete columns.

Keywords: columns; FRP strengthening; interaction domain; seismic
upgrade
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INTRODUCTION 

 

When assessing the seismic performance of existing reinforced concrete 

buildings designed according to obsolete codes, one can identify potentially dangerous 

situations that could result in catastrophic failures. Among these, a typical inadequacy 

lies in the so-called “strong beam-weak column” situation, which, if extended to all 

columns at a given floor, can lead to the development of soft-storey mechanisms.  

 

Such weaknesses should be eliminated by upgrading all weak columns in the 

zones of potential formation of plastic hinges. By no means should one pursue in these 

zones a ductility increase, which can result in unfavorable P–delta effects. Instead, one 

should aim at increasing the flexural capacity of those zones, with the objective of 

relocating the potential plastic hinges from the columns to the beams, thus re-establishing 

a desirable “weak beam-strong column” situation. This can be achieved by strengthening 

the column end sections so that, at a given beam-column joint, the sum of the column 

flexural capacities becomes larger than the sum of the framing beam capacities. 

 

A possible way to obtain this behavior is to apply FRP sheets along the column 

faces, with the fibers oriented parallel to the column axis, at the end zones. From the 

technological standpoint, this solution requires to conceive appropriate devices to fasten 

the FRP sheet ends to the beams soffit, so that they can contribute their full strength at 

the critical column section, without debonding.  

 

Once this practical aspect is solved, the problem remains of determining the 

adequate amount of FRP–strengthening to be applied to the column sections in order to 

obtain the sought flexural capacities.  

 

As a matter of fact, design equations for FRP–strengthening have been easily 

derived for beams, under pure bending, and, after having been the object of countless 

experimental studies worldwide, are now incorporated in most recent codes or 

instructions. On the other hand, to the authors’ knowledge, no such equation has been 

proposed so far for the case of columns, where, apparently, the interaction with the axial 

load has represented a serious obstacle to the development of a simple and practical 

formulation. 
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Having said this, it should be clear that the intent of this paper is to propose a 

possible solution to this need: find a simple procedure that possibly makes use of closed-

form equations, to design the correct amount of FRP strengthening in a column, with due 

consideration of the interaction with the axial load. Also, as a byproduct of this study, it 

would be expedient to relate the amount of FRP strengthening to the resultant failure 

mode and, possibly, to determine a set of limitations for it. 

 

This is done by first presenting the classic treatment for unstrengthened column 

sections, with the purpose of introducing the notation of the non–dimensional approach 

and to describe the failure modes considered. Then, the equations are extended to the 

case of FRP–strengthened column sections, after which, the quite cumbersome “exact” 

approach followed so far is made more accessible and usable by simplification of the 

equations through a secant approach. This produces a segmentation of the “bending 

moment–axial load” interaction domain that compares to the exact one reasonably well. 

The summary of the procedure concludes the paper. 

 

UNSTRENGTHENED SECTIONS  

UNDER COMBINED BENDING AND AXIAL LOAD 

 

Reinforced concrete section analysis at the ultimate limit state under combined 

bending and axial is based on the following usual hypotheses: 

• plane sections remain plane (linear strains); 

• perfect bond between steel and concrete; 

• no tensile strength in concrete; 

• non–linear stress-strain laws for steel (bilinear) and concrete (parabola-

rectangle). 

 

The strain state over the section is uniquely defined by the concrete compression strain ε
c
 

and by the steel tensile strain ε
s
. Flexural failure occurs when one of the following 

conditions is met: ε
c
 = ε

cu
 = 0.0035, the concrete ultimate strain, or ε

s
 = ε

su
 = 0.01, the 

steel ultimate strain. Referring to the representation in  

Figure 1, sectional failure can occur in one of the following modes (ε
yd

 = 0.002 = 

yield strain): 

• ε
c
 < ε

cu
 and ε

s
 = ε

su
 (mode 1); 

• ε
c
 = ε

cu
 and ε

yd
 ≤ ε

s
 < ε

su
 (mode 2); 

• ε
c
 = ε

cu
 and 0 ≤ ε

s
 < ε

yd
 (mode 3). 

 

Exact approach 

Consider a rectangular cross-section with different top and bottom reinforcement, under 

combined bending and axial load. The non–dimensional equilibrium equations 

(translation and rotation) can be written as follows: 

( ' )
s Sd

s u s nαξ +µ − =  (1)

[ ]0.5(1 ) 0.5 (1 )( ' )
s Rd

k s u s mαξ + δ − ξ + µ − δ + =  (2)
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where 

0.85

Sd

Sd

cd

N

n

bd f

=  and 

cd

Rd

Rd

fbd

M

m

85.0

2

=  are the non–dimensional values of the 

applied axial load N
Sd

, and of the resisting moment M
Rd

, respectively, where b = section 

width, d = section depth and f
cd

 = design concrete compressive strength (0.85 accounts 

for long-term loads). The coefficient α defines the equivalent stress block; its value 

depends on the concrete compression strain ε
c
. The non-dimensional parameter 

x dξ = defines the neutral axis depth; k  is the concrete compression resultant depth; 

'd dδ = is the cover ratio, where d’ is its thickness; 
ss

AAu '= is the top/bottom 

reinforcement ratio, while s and s’ are the steel stress ratios: ' '
s yd

s f= σ e 
s yd

s f= σ . 

The ratio 

0.85

s yd

s

cd

A f

f b d

⋅

µ =

⋅ ⋅ ⋅

 represents the tensile steel reinforcement mechanical ratio.  

With the only exception of mode 2, where it is directly computed, in all modes the non–

dimensional neutral axis depth ξ should be determined by iteratively solving Equation 1.  

 

Approximate (secant) approach 

In order to avoid such iterative approach, it is possible, through the secant 

method, to find simplified expressions for the resisting moment as function of the acting 

axial load. Mode 1 is usually subdivided into two sub–modes: mode 1a and mode 1b, 

which differ in the compression steel state, either elastic or yielded. 

 

Mode 1a — It is defined by: 
s su

ε = ε , ε
c
 < ε

cu
, '

s yd
ε ≤ ε ; the limiting conditions 

are: 0
c

ε =  and '
s yd

ε = ε . Stress ratios are: 5 ' 1s− δ ≤ ≤ , 1=s . The neutral axis depth 

varies between the boundaries: 0ξ = , for 0
c

ε = , and 

1 5

6

+ δ

ξ = , for '
s yd

ε = ε . 

 

The corresponding non–dimensional axial load varies between the boundaries: 

0

(1 5 )
d s

n u= −µ + δ , for 0
c

ε =  (3)

and, recalling that 2 3α ≅ : 

1

(1 5 )

( 1)

9
d s

n u

+ δ

= +µ − , for '
s yd

ε = ε  (4)

The non–dimensional resisting moment varies between the boundaries: 

0

0.5 (1 5 )(1 )
Rd s

m u= µ − δ − δ , for 0
c

ε =  (5)

and, recalling that, for '
s yd

ε = ε , one has 1 3k ≅ , thus: 

1

(1 5 ) (1 5 )

(1 ) (1 )( 1)

18 9
Rd s

m u

+ δ + δ 
= + δ − +µ − δ +

 
 

, for '
s yd

ε = ε  (6)
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Through the secant method and assuming a typical value of 0.05δ = , the equation of the 

resisting moment for mode 1a is given by: 

[ ]
(1 )

1.2 121

( ) 0.475 (1 0.25 ) (1 0.25 )

2 1.4 12

s

Rd a d s d s

s

u

m n u n u

u

+ µ

≅ µ − + +µ +

+ µ

 (7)

with the axial load varying between: 
0

(1 0.25 )
d s

n u= −µ +  and 
1

0.14 ( 1)
d s

n uµ= + −  

 

Mode 1b — It is defined by: 
s su

ε = ε , ε
c
 ≤ ε

cu
, '

s yd
ε ≥ ε ; the limiting conditions 

are: '
s yd

ε = ε  and 
c cu

ε = ε . Stress ratios are: 1'=s , 1=s . The neutral axis depth varies 

between the boundaries: 

1 5

6

+ δ

ξ = , for '
s yd

ε = ε , and 0.259ξ = , for 
c cu

ε = ε . 

 

The corresponding non–dimensional axial load varies between the boundaries: 

1

(1 5 )

( 1)

9
d s

n u

+ δ

= +µ − , for '
s yd

ε = ε  (8)

recalling that 2 3α ≅ , and, recalling that 0.8α ≅ :  

2

0.2 ( 1)
d s

n u= +µ − , for 
c cu

ε = ε  (9)

By assuming α  constant and 8.0≅ , the neutral axis depth is known: 

( 1) ( 1)

0.8

Sd s Sd s

n u n u−µ − −µ −

ξ = =

α

 (10)

and the resisting moment equation is: 

[ ][ ]
(1 )

1

( ) ( 1) (1 ) ( 1) 0.5 (1 )( 1)

2
Rd b Sd Sd s Sd s s

m n n u n u u= −µ − + δ − +µ − + µ − δ +  (11)

By assuming a typical value of 0.05δ = , the equation of the resisting moment for mode 

1b is given by: 

[ ][ ]
(1 )

1

( ) ( 1) 1.05 ( 1) 0.475 ( 1)

2
Rd b Sd Sd s Sd s s

m n n u n u u≅ −µ − − +µ − + µ +  (12)

 

Mode 2 — It is defined by: 
su s yd
ε ≤ ε ≤ ε , 

c cu

ε = ε , '
s yd

ε ≥ ε ; the limiting 

conditions are: 
s su

ε = ε  and 
s yd
ε = ε . Stress ratios are: 1'=s , 1=s . The neutral axis 

depth varies between the boundaries: 0.259ξ = , for 
s su

ε = ε , and 0.636ξ = , for 

s yd
ε = ε . 

 

The corresponding non–dimensional axial load varies between the boundaries: 
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2

0.2 ( 1)
d s

n u= +µ − , for 
s su

ε = ε  (13)

Recalling that 0.8α ≅ , and: 

3

0.51 ( 1)
d s

n u= +µ − , for 
s yd
ε = ε  (14)

The neutral axis depth is known: 

( 1) ( 1)

0.8

Sd s Sd s

n u n u−µ − −µ −

ξ = =

α

 (15)

By assuming a typical value of 0.05δ = , the equation of the resisting moment for mode 

2 is given by: 

[ ][ ]
(2)

1

( ) ( 1) 1.05 ( 1) 0.475 ( 1)

2
Rd Sd Sd s Sd s s

m n n u n u u≅ −µ − − +µ − + µ +   (16)

 

Mode 3 — It is defined by: 0
yd s

ε ≤ ε ≤ , 
c cu

ε = ε , '
s yd

ε ≥ ε ; the limiting 

conditions are: 
s yd
ε = ε  and 0

s

ε = . Stress ratios are: 1'=s , 01 ≥≥ s . The neutral axis 

depth varies between the boundaries: 0.636ξ = , for 
s yd
ε = ε , and 1ξ = , for 0

s

ε = . 

The corresponding non–dimensional axial load varies between the boundaries: 

3

0.51 ( 1)
d s

n u= +µ − , for 
s yd
ε = ε  (17)

recalling that 0.8α ≅ , and: 

4
0.8

d s

n u= +µ , for 0
s

ε =  (18)

The non–dimensional resisting moment varies between the boundaries: 

[ ]
3

0.51 0.5(1 ) 0.26 0.5 (1 )( 1)
Rd s

m u= + δ − + µ − δ + , for 
s yd
ε = ε  (19)

recalling that 0.4k ≅ and: 

[ ]
4

0.8 0.5(1 ) 0.4 0.5 (1 )
Rd s

m u= + δ − + µ − δ , for 0
s

ε =  (20)

Through the secant method and assuming a typical value of 0.05δ = , the equation of the 

resisting moment for mode 3 is given by: 

[ ]
(3)

1 10

( ) 0.14 0.475 ( 1) 0.51 ( 1)

7 20

s

Rd Sd s Sd s

s

m n u n u

+ µ

≅ + µ + − − −µ −

+ µ

 (21)

with the axial load varying between: 
3

0.51 ( 1)
d s

n u= +µ −  and 
4

0.8
d s

n u= +µ . 

 

Comparison between exact and approximate approaches 

In Figure 2 a comparison is shown between the interaction diagram obtained 

through the exact approach and that obtained through the approximate (secant) approach. 

It is noted that the comparison is satisfactory and that the maximum error committed is 
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about 10%. However, the portions on the diagram of main interest for design purposes, 

that is, those pertaining to modes 1a, 1b and 2, are accurately represented, with errors as 

low as 5%. 

 

FRP–STRENGTHENED SECTIONS  

UNDER COMBINED BENDING AND AXIAL LOAD 

 

FRP–strengthening of sections under combined bending and axial load can be 

pursued through the application on the column sides of one or more layers of fabric. 

FRP–strengthened RC section analysis at the ultimate limit state is based on the same 

usual hypotheses adopted for the unstrengthened section, with the addition of the 

following: 

• perfect bond between FRP and concrete; 

• no compressive strength in FRP; 

• linear stress–strain law for FRP. 

 

The strain state over the section is uniquely defined by the concrete compression 

strain ε
c
 and by the FRP tensile strain ε

f
. Flexural failure occurs when one of the 

following conditions is met: ε
c
 = ε

cu
 = 0.0035, the concrete ultimate strain, or ε

f
 = ε

fd
, the 

FRP ultimate strain (usually, debonding). For this latter it is assumed, with any loss of 

generality, that, when 
f fd

ε = ε , steel has yielded, i.e., 
yd s su

ε ≤ ε ≤ ε  (ε
yd

 = 0.002, ε
su

 = 

0.01 are the steel yield and ultimate strain, respectively). 

 

Referring to the representation in  

Figure 3, sectional failure can occur in one of the following modes: 

• ε
c
 < ε

cu
 and ε

f
 = ε

fd
 (mode 1); 

• ε
c
 = ε

cu
 and ε

yd
 ≤ ε

f
 < ε

fd
 (mode 2). 

 

Exact approach 

Consider a rectangular cross–section with different top and bottom reinforcement and 

with FRP strengthening at the bottom, under combined bending and axial load. The non–

dimensional equilibrium equations (translation and rotation) can be written as follows: 

( ' )
s f f Sd
s u s s nαξ +µ − −µ =  (22)

[ ]0.5(1 ) 0.5 (1 )( ' ) 0.5 (1 )
s f f Rd

k s u s s mαξ + δ − ξ + µ − δ + + µ + δ =  (23)

with the same definitions as for the case of unstrengthened section, and where the ratio 

0.85

fdd
f

f

cd

A f

f b d

⋅

µ =

⋅ ⋅ ⋅

 represents the FRP–strengthening mechanical ratio, where A
f 
 = FRP 

area, and f
fdd

 = debonding strength; s
f
  = FRP stress ratio, given by: 

f f fdd
s f= σ  (24)

In all modes the non–dimensional neutral axis depth ξ should be determined by 

iteratively solving Equation 22. 
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Approximate (secant) approach 

Also in this case, in order to avoid such iterative approach, it is possible, through 

the secant method, to find simplified expressions for the resisting moment as function of 

the acting axial load. 

 

Mode 1 is also subdivided into two sub–modes: mode 1a and mode 1b, which 

differ in the compression steel state, either elastic or yielded. 

 

Mode 1a — It is defined by: 
f fd

ε = ε , ε
c
 < ε

cu
; the limiting conditions 

are: 0
c

ε =  and '
s yd

ε = ε . Stress ratios are: ' 1

1

fd

yd

s

ε δ

− ≤ ≤

ε + δ

, 1=s , 1=
f

s . The neutral 

axis depth varies between the boundaries: 0ξ = , for 0
c

ε = , and 

(1 )
yd fd

yd fd

ε + δ + ε δ

ξ =

ε + ε

, 

for '
s yd

ε = ε . 

 

The corresponding non–dimensional axial load varies between the boundaries: 

0

1

1

fd

d s f

yd

n u

 ε δ
= −µ + −µ 

 ε + δ
 

, for 0
c

ε =  (25)

and, recalling that 2 3α ≅ : 

1

(1 )2

( 1)

3

yd fd

d s f

yd fd

n u

ε + δ + ε δ

= +µ − −µ

ε + ε

, for '
s yd

ε = ε  (26)

The non–dimensional resisting moment varies between the boundaries: 

0

0.5 (1 ) 1 0.5 (1 )

1

fd

Rd s f

yd

m u

 ε δ
= µ − δ − + µ + δ 

 ε + δ
 

, for 0
c

ε =  (27)

and, recalling that, for '
s yd

ε = ε , one has 31≅k : 

( )
1

(1 ) (1 )2 1

0.5 1

3 3

0.5 (1 )( 1) 0.5 (1 )

yd fd yd fd

Rd

yd fd yd fd

s f

m

u

 ε + δ + ε δ ε + δ + ε δ

= + δ − + 
ε + ε ε + ε  

+ µ − δ + + µ + δ

, for '
s yd

ε = ε  (28)

In order to simplify the above equations, one can assume, without loss of accuracy, 0δ = . 

Introducing the variable: 

1

2

2 1000 1

yd

yd fd fd

r

r

ε

ξ = = =

ε + ε + ε +

 (29)

where: 
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2

1000
fd

r =

ε

 (30)

the axial load varies between the boundaries: 

0

( )
d s f
n = − µ +µ , for 0

c

ε =  (31)

and 

1 1

2

( 1)

3
d s f
n u= ξ +µ − −µ , for '

s yd
ε = ε  (32)

The non–dimensional resisting moment varies between the boundaries: 

0

1

( )

2
Rd s f

m ≅ µ +µ , for 0
c

ε =  (33)

and 

( )
1 1 1

2 1 1 1 1

1

3 2 3 2 2

Rd s f
m u

 
≅ ξ − ξ + µ + + µ

 
 

, for '
s yd

ε = ε  (34)

 

Mode 1b — It is defined by: 
f fd

ε = ε , ε
c
 ≤ ε

cu
, '

s yd
ε ≥ ε ; the limiting conditions 

are: '
s yd

ε = ε  and 
c cu
ε = ε . Stress ratios are: 1'=s , 1=s , 1=

f
s . The neutral axis depth 

varies between the boundaries: 

(1 )
yd fd

yd fd

ε + δ + ε δ

ξ =

ε + ε

, for '
s yd

ε = ε , and 

(1 )
cu

cu fd

ε + δ

ξ =

ε + ε

, 

for 
c cu
ε = ε . 

The corresponding non–dimensional axial load varies between the boundaries: 

1

(1 )2

( 1)

3

yd fd

d s f

yd fd

n u

ε + δ + ε δ

= +µ − −µ

ε + ε

, for '
s yd

ε = ε   (35)

Recalling that 32≅α , and, recalling that 8.0≅α :  

2

(1 )

0.8 ( 1)
cu

d s f

cu fd

n u

ε + δ

= +µ − −µ

ε + ε

, for 
c cu
ε = ε  (36)

The non–dimensional resisting moment varies between the boundaries: 

1

(1 ) (1 )2 1

0.5(1 )

3 3

0.5 (1 )( 1) 0.5 (1 )

yd fd yd fd

Rd

yd fd yd fd

s f

m

u

 ε + δ + ε δ ε + δ + ε δ

= + δ − + 
ε + ε ε + ε  

+ µ − δ + + µ + δ

 , for '
s yd

ε = ε  (37)

and, recalling that, for 
c cu
ε = ε , one has 4.0≅k , thus: 
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2

(1 ) (1 )

0.8 0.5(1 ) 0.4

0.5 (1 )( 1) 0.5 (1 )

cu cu

Rd

cu fd cu fd

s f

m

u

 ε + δ ε + δ
= + δ − + 

ε + ε ε + ε  

+ µ − δ + + µ + δ

, for 
c cu
ε = ε  (38)

Assuming 0δ =  and introducing the variable: 

2

3.5 1.75

3.5 1000 1.75 1

cu

cu fd fd

r

r

ε ⋅

ξ = = =

ε + ε + ε ⋅ +

 (39)

the axial load varies between the boundaries: 

1 1

2

( 1)

3
d s f
n u= ξ +µ − −µ , for '

s yd
ε = ε   (40)

2 2

0.8 ( 1)
d s f
n uξ µ µ= + − − , for 

c cu
ε = ε  (41)

The non–dimensional resisting moment varies between the boundaries: 

1 1 1

2 1 1 1 1

( 1)

3 2 3 2 2
Rd s f

m u

 
≅ ξ − ξ + µ + + µ

 
 

, for '
s yd

ε = ε  (42)

2 2 2

1 1 1

0.8 0.4 ( 1)

2 2 2
Rd s f

m u

 
≅ ξ − ξ + µ + + µ

 
 

, for 
c cu
ε = ε  (43)

 

Mode 2 — It is defined by: 

0.36

0.36
fd f yd

+ δ

ε ≤ ε ≤ ε , 
c cu
ε = ε , '

s yd
ε ≥ ε ; the 

limiting conditions are: 
f fd

ε = ε  and 
s yd
ε = ε . Stress ratios are: 1'=s , 1=s , 

0.36

1

0.36
f
s r

+ δ

≤ ≤ . The neutral axis depth varies between the boundaries: 

(1 )
cu

cu fd

ε + δ

ξ =

ε + ε

 

for 
f fd

ε = ε , and 0.636ξ = , for 
s yd
ε = ε . 

The corresponding non–dimensional axial load varies between the boundaries: 

2

(1 )

0.8 ( 1)
cu

d s f

cu fd

n u

ε + δ

= +µ − −µ

ε + ε

, for 
f fd

ε = ε  (44)

3

0.63

0.51 ( 1)

0.63
d s f
n u r

+ δ

= +µ − −µ , for 
s yd
ε = ε   (45)

The non–dimensional resisting moment varies between the boundaries: 

2

(1 ) (1 )

0.8 0.5(1 ) 0.4

0.5 (1 )( 1) 0.5 (1 )

cu cu

Rd

cu fd cu fd

s f

m

u

 ε + δ ε + δ
= + δ − + 

ε + ε ε + ε  

+ µ − δ + + µ + δ

, for 
f fd

ε = ε  (46)
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[ ]

3

0.51 0.5(1 ) 0.25 0.5 (1 )( 1)

0.63

0.5 (1 )

0.63

Rd s

f

m u

r

= + δ − + µ − δ + +

+ δ

+ µ + δ

, for 
s yd
ε = ε  (47)

Assuming 0=δ , the axial load varies between the boundaries: 

2 2

0.8 ( 1)
d s f
n u= ξ +µ − −µ , for 

f fd
ε = ε   (48)

3

0.51 ( 1)
d s f
n u r= +µ − −µ , for 

s yd
ε = ε  (49)

The non–dimensional resisting moment varies between the boundaries: 

2 2 2

1 1 1

0.8 0.4 ( 1)

2 2 2
Rd s f

m u

 
≅ ξ − ξ + µ + + µ

 
 

, for 
f fd

ε = ε  (50)

3

1 1

0.12 ( 1)

2 2
Rd s f

m u r≅ + µ + − µ , for 
s yd
ε = ε  (51)

All the equations developed above can be easily transformed into more treatable ones 

through the following coordinate shift: 

(1 )
Sd s f
n uη = +µ − +µ  (52)

1

( 1)

2
Rd s f

m u = − µ + +µ
 

ζ  (53) 

By which one can define the new boundary values for the axial load and the resisting 

moment at each failure mode.  

 

Mode 1a — The variables η  and ζ  vary between the boundaries: 

0

(1 )
Sd s f s
n u uη = +µ − +µ = −µ  (54)

0

1 1

( 1)

2 2
Rd s f s

m u u = − µ + +µ = − µ
 

ζ  (55) 

for 0
c

ε = , and: 

1 1

2

3

η = ξ  (56)

1 1 1

2 1 1

3 2 3

 
= ξ − ξ

 
 

ζ  (57) 

for '
s yd

ε = ε . 

 

Applying the secant method, the resisting moment is computed from: 
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1 1 0

(1a) 0 0

1 0

(1 )1

( ) ( )

2

 η −η −η
η = η + η−η 

η −η 

ζ  (58) 

 

Mode 1b — The variables η  and ζ vary between the boundaries: 

1 1

2

3

η = ξ  (59)

1 1 1

2 1 1

3 2 3

 
= ξ − ξ

 
 

ζ  (60) 

for '
s yd

ε = ε , and: 

2 2

0.8η = ξ  (61)

2 2 2

1

0.8 0.4

2

 
= ξ − ξ

 
 

ζ  (62) 

for 
c cu

ε = ε . 

 

Applying the secant method, the resisting moment is computed from: 

[ ]{ }
(1 ) 1 2 1 2

1

( ) 1 ( )

2
b

η = η ⋅η + − η + η ηζ  (63) 

 

Mode 2 — The variables η  and ζ  vary between the boundaries: 

2 2

0.8η = ξ  (64)

2 2 2

1

0.8 0.4

2

 
= ξ − ξ

 
 

ζ  (65) 

for 
f fd

ε = ε , and:  

( )
3

0.51 1
f

rη = +µ −  (66)

( )
3

1

0.12 1

2

f
r= + µ −ζ  (67) 

for 
s yd
ε = ε  . 

 

Applying the secant method, the resisting moment is computed from: 

3 2 2

(2) 2 2 2

3 2

(0.75 ) (1 )1

( ) (1 ) ( )

2

 −η −η −η
η = η −η + η−η 

η −η 

ζ  (68) 
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CONCLUSIONS 

A study has been presented that proposes an approach to design the amount of 

FRP to strengthen RC columns sections with insufficient bending capacity. The method 

accounts for the interaction between bending and axial load. Two approaches are 

compared: an exact one vs. an approximate one, which makes use of a secant method. 

The resulting interaction diagram obtained with the latter shows very little deviation from 

the exact one, with the significant advantage of using extremely simple equations for the 

different failure modes. The proposed method lends itself to a straightforward design of 

FRP strengthening of under–designed concrete columns: starting from the assigned axial 

load, the failure mode is directly found and the corresponding moment capacity 

computed. It has been shown that the failure mode depends on the amount of both the 

existing steel reinforcement and the added FRP strengthening and that the failure mode 

can be modified by adjusting the amount of the latter. 

 

NOTATION 

 

The following symbols are used in this paper: 

 

A
f
 area of FRP strengthening  

A
s
 cross sectional area of  tensile steel reinforcement  

A’
s
 cross sectional area of compressive steel reinforcement  

E
f
 elastic modulus of FRP strengthening  

b width of cross – section  

b
f
  width of FRP strengthening 

d  effective depth of cross – section  

d’  concrete cover thickness 

f
cd

  design value of concrete cylinder compressive strength 

f
fdd

  design value of FRP strengthening debonding strength 

f
fdd,1

  design value debonding strength of a single layer of FRP strengthening  

f
fdd,nf

  design value debonding strength of a n
f
 layers of FRP strengthening 

f
yd

  design yield strength of reinforcement 

x  neutral axis depth 

k  distance of resultant of the concrete compressive stress from the extreme fibre 

m
Rd

  non–dimensional value of resisting moment M
Rd

 

M
Rd

  resisting bending moment 

m
Rd0

 non–dimensional resisting moment lower boundary for failure mode 1a 

m
Rd1

 non–dimensional resisting moment boundary between failure mode 1a and 1b 

m
Rd2

 non–dimensional resisting moment boundary between failure mode 1b and 2 

m
Rd3

  non–dimensional resisting moment boundary between failure mode 2 and 3 

m
Rd4

  non–dimensional resisting moment boundary between failure mode 3 and 4 

m
Rd(nf)

  non–dimensional resisting moment in relevant failure mode nf 

n
d0

  non–dimensional axial load lower boundary for failure mode 1a  

n
d1

 non–dimensional axial load boundary between failure mode 1a and 1b  

n
d2

  non–dimensional axial load boundary between failure mode 1b and 2 

n
d3

  non–dimensional axial load boundary between failure mode 2 and 3 
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Figure 1 — Failure modes of an unstrengthened RC section.
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Figure 2 — Comparison between exact and approximate approaches for an
unstrengthened RC section under combined bending and axial load.

Figure 3 — Failure modes of an FRP-strengthened RC section.
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Figure 4 — Comparison between exact and approximate approaches for an
FRP-strengthened RC section under combined bending and axial load.
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